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Abstract The radiation conduction coupling leads to particular problems due to computation
time and high heat fluxes. Because of the hemispheric nature of the radiation, it is difficult to take
into account symmetric or periodic conditions for the reduction of the modelled domain. We
developed a finite element model of radiative heat transfers between grey diffuse surfaces with a
nonparticipating medium with periodic or symmetric boundary conditions. The approaches used
to decrease the computation time allowed the modelling of moving radiative surfaces. We
introduced this model into a finite element convection diffusion code in order to simulate heat
transfers in an electrical rotating engine. The main originality of this study lies in the use of
periodic radiative conditions with moving surfaces and in the use of a method which is not based
on the isothermal approximation.

Nomenclature
qe = angle between re-n and ne

qn = angle between re-n and nn (normal to Gn)
ne = normal vector to Ge at dGe

Nelt = total number of elements
T = temperature (ëC)
dGe = elementary surface Ge

dT = first variational of T
Ge = surface boundary element
We = domain element
s = radiation constant s=5, 67 10-8 (W/m2.K4)
Nev = number of element viewed by Ge

Re = radiosity of dGe (W/m2)
re-n = segment joining dGe and dGn

qe = angle between ne and re-n (radians)
jx = Jacobian determinant multiplied by

Gaussian weight
<Ni> = interpolation function

xl,xk = Gaussian point coordinates in Ge and Gn

in the reference.
Se = surface of element Ge

ee, ae, r = emissivity, absorptivity and reflexivity
of dGe

[ke h] = elementary matrix of boundary
convection conditions

[kec] = elementary matrix of diffussion
[ker] = elementary matrix of boundary emitted

radiation
{fe h} = elementary vector of boundary

convection condition
{fei} = elementary vector of imposed flux

boundary condition
{fer} = elementary vector of received boundary

radiation condition

Physical model
The physical phenomenon taken into account is the radiative transfer which
occurs at the boundary of an opaque medium (see Figure 1). The radiative
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surfaces are assumed grey and diffuse and separated by a transparent medium.
This radiative transfer is coupled to a diffusive transfer. The diffusive transfer
is governed by the heat equation.
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The radiative transfers occur as flux boundary conditions. The radiative flux is
expressed according to the temperature of the surface and the radiosity of the
viewed surfaces (2).
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The radiosities are linked to temperatures via the radiative transfer equation
expressed in (3) for an elementary surface ÿe in a diffuse grey enclosure.
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Both equations (1) and (3) are strongly coupled.

Finite element formulation of radiation conduction coupling
The finite element formulation used is a Galerkin formulation. It is widely
described in the literature for example by Touzot and Dhatt (1981) and Comini
et al., (1994). If the medium is transparent, radiation occurs as a flux boundary
condition. The radiative flux creates solicitations at the nodes of the surfaces
which surround the opaque domain. The computation of the solicitations
characterizes the different approaches used in the literature. They all compute
the radiative fluxes. Computations for grey and diffuse surfaces have been
described in the literature. They solve the radiative transfer equation. The
unknowns are the nodal radiosity values or the elementary radiative fluxes
with respect to temperature. A most successful method is the isothermal zone
one. In this approach, the surfaces are divided into isothermal zones. The
temperature, the radiative properties, the emitted, incident and reflected
radiative fluxes are constant on each zone. This approach is well suited to
numerical computation because the boundary elements of the mesh are easily
identified to these isothermal zones.

Radiative exchanges

Opaque domain

Transparent domainFigure 1.
Physical problem
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This approach often requires very fine meshes in the high temperature or
strong gradient areas. The approximation on which they rely is questioned.
The illumination of a zone by another, namely the radiative flux emitted by an
element and received by another one, may vary strongly. The variation exists
even when the sources are isothermal because the radiative fluxes received by
an elementary surface of the element is inversely proportioned to the square of
the distance, which separates the elementary surface from the source. This
isothermal approximation is penalising in several cases. The faults of these
methods have been pointed out by Reddy and Murty (1978) from 1978 on and
more recently by Daurelle (1992, 1994); Daurelle et al. (1994) and Lobo and
Emery (1995).

The approach we use does not rely on the isothermal approximation. The
radiative fluxes are averaged on elements but expressed according to the
radiosities directly into the finite element formulation of the heat equation. The
radiosities are computed from temperatures by applying a finite element
formulation to the radiative transfer equation. The iterative process consists of
the solutions of radiative and then heat transfer equations up to convergence.
This formulation noted D.I. for direct integration is more precise because it
takes into account variations of the emitted, incident and reflected fluxes.
However, the D.I. computation times are noticeably more important than those
of an isothermal zone method.

In this work, the precise integration method has been associated with a
formulation closed to the isothermal zone method.

Our approach adapts the computational effort to the treated configuration.
The fluxes are expressed either via the zone method or via the D.I. method
according to the treated element couple. We use a criterion based on the part of
the elementary radiative flux compared with the total received flux in order to
determine the choice for the method. This criterion does not involve any
additional computation cost.

Elementary parameters
The energy equation discretized via finite elements is written after part
integration under the following weak integral form:
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The surface radiation terms occur as imposed flux boundary conditions on the
limits of the opaque domain. The term Ier has to be added to the Ie integral form
to take into account the radiation effect.
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The net radiative flux �er is expressed on an element under the form (2). If the
surface ÿe is grey and diffuse, then the flux can be expressed without the
summation on the viewed elements.
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To decrease the non linearity of the finite element system, the elementary
integral form Ier has been divided into two integral forms. One corresponds to
the emitted radiative flux Iere and the other to the received radiative flux Ierr.

Ier � Iere � Ierr �7�
The term of the emitted radiation is expressed according to temperature under
the form
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Where the expression of E is

E � "

1ÿ "
for grey surfaces and for black surfaces

E � 1

The elementary vector of the nodal residues, which corresponds to the emitted
radiation, is expressed according to the nodal temperature {Te} and to an
elementary matrix of the emitted radiation [kre]

Iere � h�Tei�kre�fTeg �9�
With the Gaussian integration, the expression of [kre] becomes
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The term of the received radiation is expressed according to the radiosity under
the following integral form
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If the surface of Ge is assumed grey and diffuse, the integrals are written under
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the following form
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The introduction of the interpolation function leads to the expressions of the
elementary vectors of the received radiation. They depend on the nature of the
surface (grey or black). If the surfaces are grey diffuse the vector is expressed
simply
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However, if the element is black the expression of the vector is a sum of all the
viewed elements of elementary vectors {fer}n.
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There are two possible expressions of the vectors. A classical approach of the
isothermal zone uses the form factors. The second option integrates via a
Gaussian method to take into account the temperature variations and the
lighting on the elements. With the isothermal approximation the vector is
written
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When integrating via the Gaussian method the vector becomes
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The computation times are then proportionate to the number of nodes as is the
isothermal approximation. They are also proportionate to the square of the
number of Gaussian points. Nevertheless, the description of the flux is more
accurate particularly when there is a shadow between the elements. The
shadow is taken into account finely with a shadow factor between each
Gaussian point K0(�e, �n).

The isothermal approximation is used for the main coupled elements. The
direct integration is applied only between the closest elements. The choice for
one or the other computation methods for vector {fer}n is carried out according
to the fraction of the total flux received by element ÿe from ÿn (Daurelle, 1992).
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We impose a value of Cre-n below which the solicitation (13) is expressed with
the isothermal approximation. In practice, a 0.05 value provides the best
results. It will represent only a very slight part, about 2 per cent, of the treated
interactions. The discussion of the pertinent values of Cre-n is presented in
Daurelle (1994).

Computation of the nodal values of the radiosities
For the computation of the nodal values of the radiosities, which occur in (3)
and (4), we have applied to the radiative balance a Galerkin finite element
formulation on each element. The integral form of the radiative transfer
equation is written
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The elementary integral forms can be divided into three integral forms
corresponding to the total radiation (IeRt), to the reflected variation (IeRr) and to
the proper emission (IeRe). After introducing the interpolation functions, the
integral forms lead to the following expressions
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The computation of matrix [keRt] and of vector {feR} has not been detailed
because it does not represent any difficulty. The expression of matrix [keRt]n,
which corresponds to the radiation reflected by ÿe, emitted by ÿn, is a double
integral similar to (15). The matrix is computed for grey diffuse surfaces
(�e6�0). only. There are two options to calculate the matrix. Either one applies
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the approximation of the zone method to use the form factor or one integrates
the expression of the reflected radiation directly. Matrix [keRr]n is then
expressed by integrating via the Gaussian method.

Global thermal finite element system

When we omit the transport term, the global system is identical to the systems
corresponding to the diffusion problems with classical boundary conditions
(convection, imposed flux, radiation with an outer medium at a constant
temperature). The coupling with radiative interaction conditions is obtained by
adding matrices [ker] and vectors {fer}.XN ele:

e

f�kec� � �keh� � �ker�gfTg ÿ
XN ele:

e

fffeig � ffehg � ffergg � 0 �23�

Both methods are used selectively in the computation of vector {fer}n and for
the radiosity matrices resulting from D.I. or I.A. The obtained algebraic system
is strongly nonlinear. The matrix includes terms in T3 and the right hand side
of the system in T4. A Newton-Raphson method has been used with an
Eulerian implicite scheme.

Application: radiative exchange in the air gap of an electrical engine

Consider the heat transfer in the air gap of an electrical engine (Figure 2). Air,
which is considered as a Newtonian fluid, is confined between two concentric
annulae. The aspect ratio (thickness of the air gap on the outer radius of the
rotor) is less than one. In the developed model, the thermal phenomena
(conduction-radiation) are coupled with the convective phenomena. The
buoyancy influence is neglected because of the low dimensions compared with
the rotation velocities.

The rotor provides the fluid of the air gap with heat. It is due to the
temperature rise of the resistive winding. A circuit cooled down by water
circulation is placed on the outer part of the stator. As the slots are placed

Elementary Pattern

Cooling circuit

Radiative surfaces

Stator

Rotor

Air gap

Heat
source

Figure 2.
Simulated domain
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regularly on the rotor and stator walls, we model only one angular sector.
Periodicity conditions have to be introduced on the radial limits of the modelled
elementary unit.

Physical problem
It is a 2D study of the periodically unsteady laminar case. The balance
equations, which govern the flow, are Navier-Stokes and continuity is solved
by a penalty finite element method. The energy equation, which governs heat
transfers (1), is coupled with fluid equations via the transport term. As far as
buoyancy is neglectable for the rotor velocities, temperature only intervenes in
the physical properties in the fluid equation.

Boundary conditions
The boundary conditions of fluid and energy equations are described in Figure
3.

Conditions on circular surfaces. For the fluid problem, a tangential velocity
has been imposed to the rotor whereas velocity is nil at the stator. For the
thermal system, a constant heat flux has been imposed to the rotor. A constant
temperature (50ëC) is imposed on the outer surface of the stator to model the
cooling flow. The outer walls of the rotor and the inner walls of the stator are
grey diffuse. The radiation condition has been applied on both walls and air
has been considered as a transparent fluid.

Periodic boundary conditions on the radial surfaces. For each problem as well
as for radiation, a periodicity condition has been imposed to the radial sides of
the model. The rotor and stator geometries as well as the physical phenomenon
(buoyancy is neglected) are periodic. By imposing periodic boundary
conditions, it is possible to model only an angular sector of the rotor-stator (set).
For this sector, which constitutes the modelled elementary unit (Figure 3), the
mass and energy fluxes going out of face 2 have been imposed on face 1 and
vice versa.

Considering periodic conditions for the diffusive and mass fluxes does not
present any particular difficulty. One only has to transfer the nodal
solicitations of the inlet surface onto the outlet surface and vice versa. As far as
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Thermal boundary conditions

Timposed = 50°C
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Nil velocity on stator surface

Periodic surface 1 Per
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Radiative
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Figure 3.
Boundary conditions
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radiative exchanges are concerned, it is more complex to take into account the
periodic conditions. Because of the expression of the flux going out of an
aperture, the distant action of radiation explains an important part of the
radiative surfaces. The radiative flux coming through the aperture is not
applied directly but is distributed on the opaque surfaces. Periodic boundary
conditions can be taken into account in radiation when the inlet aperture cannot
see the outlet aperture. The periodicity condition will then be taken into
account during the computation of the form factor. The modelled elementary
unit is duplicated virtually to take into account the presence of the previous and
following units. For each viewed element ÿn two fictitious elements ÿn0 and ÿn00

have been created. They represent the element ÿn of the previous and following
units. The form factor value between ÿe and ÿn is the sum of three factors, one
for the viewed ÿn and the others for ÿn0 and ÿn00 . The radiative periodic
condition leads to a considerable reduction of computation times. Besides, it
does not alter the expression of the finite element system because it only
changes the form factor computation.

Identification of the fluid medium and the interface
We want to model heat transfer in a domain constituted of two moving media.
One medium is entirely transparent to radiation, the other one is opaque. The
medium identification is obtained by a scalar parameter F of value 0 at the
interface of the negative values in the opaque medium and at the interface of
the positive values in the transparent medium. On an element crossed by the
interface, the interface can be located by the values at the nodes. For an
electrical engine this function is only time dependent.

Medium changes in the energy equation are obtained via thermophysical
properties computed from function F at the Gaussian integration point. If F has
value ±1, the properties are those of the opaque solid. If, on the contrary, F
equals 1, the properties are those of air. For the solution of the fluid problem the
medium will be taken into account by a change in the viscosity values. If the
Gaussian point is in the fluid, its viscosity is the air one. On the contrary, if the
element is solid its viscosity is infinite.

Mesh of the moving radiative surfaces
The exchange surface must be remeshed at each evolution and the form factors
must be recomputed according to the new interface position (F = 0). As far as
the mesh is concerned, there are two possibilities. The first one consists in
constructing the whole modelled domain again by remeshing the exchange
surfaces and volumes. The advantage of this approach is a good identification
of the surface between the media. It is however very expensive in memory and/
or computation time. As a matter of fact, a new mesh has to be reconstructed
without totally damaging the former one for the interpolation of the nodal
values of the unknowns between the new and the former nodes.

In the second approach, only the radiative surfaces are remeshed. The
diffusive mesh remains fixed. The change of medium is obtained by a variation
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of the material properties. The interface is no longer clearly defined in the mesh
of the domain but is diffused on an element. On the other hand, it is necessary
to identify the radiative surface accurately in order to compute the form factors.

The advantage of this approach is that only the exchange surfaces are
remeshed. Interpolation is the only operation, which has been carried out to
distribute the solicitations of the radiative flux on the nodes of the diffusive
mixed mesh. The radiative fluxes are considered as heat sources. Although it is
less accurate than the total remeshing method, this approach enables to save
memory and computational time. This is the reason why we opted for it.

The radiative mesh has been set with respect to the nil values of function F.
For the speed up of computations, one can approximate the position of the
radiative surface to the closest nodes of the interface (Figure 4).

Solution algorithm. The velocity and temperature problems are solved
sequentially at each step by a Newton Raphson method and an implicite
Eulerian temporal scheme.

Example of result
In the presented example fluid is air. Rotor and stator are made of steel. The
rotation velocity is 0,2Rad/s. The heat flux brought back to the minimum
radius of the rotor is 100W/m2. The mesh is composed of 640 linear elements.
The cooling fluid maintains the outer side of the stator at 500ëC. We present the
obtained results for two positions of the rotor.

In Figures 5 and 6 one can see the influence of the presence of two notches.
Whenever the notches of the rotor and the stator are crossing, some fluid is
moving from one notch to the other. This phenomenon, which is confirmed by
the velocity profile (not presented), largely increases the exchange between
rotor and stator. The global exchange coefficient between rotor and stator is
improved by the interaction of both notches. In Figure 7 we represented the
Nusselt number evolution with Taylor Number (24) for two configurations, one
with the notched rotor and stator and the other smoothed.

Ta � !R
1=2

i �eeq�
3=2

v
�24�

In the notched configurations, the transfer is improved as the Taylor number is
raising and seems to stabilize for Ta = 100. We could not model Ta number
over 100 because our model is laminar. In the notched case, the raising velocity

Remeshing close to the
interface

Approximate remeshing

Opaque Solid

Transparent
Fluid

Opaque Solid

Transparent
Fluid

Figure 4.
Mesh of the opaque
moving radiating
surface
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of the rotor improves the exchange. On the contrary, for smoothed rotor and
stator the transfer is almost purely conductive until Ta = 50 and raises slowly
and linearly after this point.

Conclusion
We have developed a finite element model for radiative transfer between grey
diffuse surfaces coupled with diffusive transfers. The methods, which have
been used for the finite element discretization and for the computation of form
factors, aim at adapting the computation effort according to the required
accuracy. The approaches lead to a finite element model fast enough to deal
with the moving surface problems. 3D geometries are nevertheless limited by
the computations or face to face shadows.

The evolution of surfaces and different media on a fixed mesh have a wide
range of industrial applications. The heat transfer problem in the air gap of an
electrical engine has demonstrated the efficiency of this approach.
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